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MAGNETIC DIPOLE MOMENT FROM A ONE-KILOTON

UNDERGROUND NUCLEAR EXPLOSION IN A CAVITY

UDC 537.8:536N. G. Karlykhanov, A. A. Kondrat’ev,

Yu. I. Matvienko, and V. N. Nogin

This paper reports the results of numerical modeling of the magnetic dipole moment produced by dis-
placement of the Earth’s magnetic field in a one-kiloton underground nuclear explosion in a cavity. It
is shown that with increase in cavity size, the magnetic dipole moment increases, reaching 107 A ·m2,
which is approximately 200 times the magnetic dipole moment from a camouflet explosion. A factor
of 100 decrease in the initial air density in cavities with radii of 10 and 20 m results in a reversal of
the direction of the magnetic dipole moment vector.
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Introduction. The seismic methods included in the international monitoring system are the main means
for monitoring underground nuclear explosions (UNE) [1, 2]. A possible method of concealing a UNE is to decrease
its seismic performance by conducting the explosion in a cavity of a rather large size (decoupling). The possibility of
using decoupling to decrease seismic-wave amplitudes was confirmed by both experiments and numerical modeling
[3–8]. Therefore, searching for monitoring methods that would supplement the seismic method is an urgent problem.
One of such methods is the recording of magnetic fields during explosions. The fullest experimental data from studies
of electric and magnetic fields in UNEs are contained in [9]. A comparison of the magnetic dipole moments produced
by camouflet UNEs and explosions of chemical explosives of the same power was made in [10]. Electric and magnetic
fields from UNEs in a cavity were analytically estimated in [11]. The present paper reports the results of numerical
modeling of magnetic dipole moments produced by UNEs in cavities of various sizes.

Computational Model. The physicomathematical model used in this study is based on the gas-dynamic
equations for a one-temperature plasma [12]. We note that the transport coefficients such as viscosity and thermal
conductivity are calculated with allowance for the ionic composition, including neutral atoms, whose concentrations
are found by solution of the kinetic equations of ionization reactions. Radiation transfer is described in a P1 spec-
tral approximation [13]. The kinetics model uses a radiation-collision approximation, in which the evolution of the
plasma ion populations is determined by the following processes: collision ionization, three-particle recombination,
photoionization, and photorecombination [14, 15]. For the photoionization and photorecombinations cross sections,
quasiclassical Kramers formulas taking into account photoionization from K-shells are used [16]. A complete de-
scription of this model is given in [17]. The equation of state for quartz incorporating vaporization is used in the
form of [18]. The ionization kinetics equations are solved together with the radiation transfer equation and the
equations of gaseous dynamics in one-dimensional spherically symmetric geometry:
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Here ρ is the density of the material, u is the mass velocity, E is the specific internal energy, c is the speed of light,
q = −æ∇T is the specific heat flux, æ is the thermal conductivity, T is the temperature, Π is the pressure due
to physical viscosity, η is the physical viscosity, Sν and Uν are the spectral flux and the radiation energy density,
Qrad is the rate of energy transfer between the material and radiation, Qν and χν are the source and absorption
coefficient of quanta with energy εν , ni is the population of state i, and Wij is the rate of transition from state j

to state i.
The explicit form of the expressions for Qν , χν , æ, and Wij is contained in [17]. The magnetic dipole

moment is calculated as in [11]. In a spherical symmetry approximation, the vector potential A has one component
A = eϕAϕ(r, t) sin θ, whose dynamics is described by the equation
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The concentrations of ions and neutral atoms are found by numerical solution of the ionization kinetics equations.
The conductivity σ is calculated with allowance for the ionic composition of the plasma [19]:
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m are the concentrations of ions of type k and neutral species of type m, σ
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sections for elastic dissipation of electrons on ions of type k and neutral species of type m, Zk is the charge of an
ion of type k, Λek is a Coulomb logarithm, me is the electron weight, e is the elementary charge, kB is Boltzmann’s
constant, and the coefficients a

(i)
k were obtained in [19].

The magnetic dipole moment M is directed along the geomagnetic field and is equal to M =
1
2c

∫
[r×j] dV .

The current density is j = eϕjϕ(r, t) sin θ.
Results of Numerical Modeling. A UNE was modeled by an instantaneous release of an energy of

4.2 · 1012 J (1 kton of TNT equivalent) in an aluminum sphere of 20.7 cm radius. The sphere was in a cavity filled
with air. Air was modelled by atomic nitrogen because in the case of small cavity sizes, high temperatures occur
(T > 1 eV) and, hence, plasmachemical reactions and dissociation energy of molecules can be neglected. Four air
densities were considered: a normal density (ρ = ρ0 = 1.3 · 10−3 g · cm−3) and three lower densities (ρ/ρ0 = 10−1,
10−2, and 10−4). The calculations were performed up to the time of 1 sec for cavity radii of R = 10, 20, 80, and
160 m.

Curves of the dipole moment versus time for an explosion in a cavity of 10 m radius in various formulations
are shown in Fig. 1. Figures 2 and 3 give r–t diagrams from calculations for this cavity for the normal and lower
air densities (ρ/ρ0 = 10−2). For the normal air density, the radiation from the UNE is absorbed in air and no
vaporization of the cavity wall occurs. The dipole moment is determined by the motion of the plasma of the
explosion products and air in the cavity and reaches the maximum by the moment the shock wave arrives at the
cavity boundary (see Fig. 2).
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Fig. 1. Magnetic dipole moment versus time in various formulations of the problem for R = 10 m:
ρ = 1.3 · 10−3 (1), 1.3 · 10−4 (2), 1.3 · 10−5 (3), and 1.3 · 10−7 g · cm−3 (4).
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Fig. 2. r–t diagram for R = 10 m and ρ = 1.3 · 10−3 g · cm−3.

Fig. 3. r–t diagram for R = 10 m and ρ = 1.3 · 10−5 g · cm−3.

For the lower air density, the radiation reaches the cavity wall and vaporizes and ionizes it. The motion
of the ionized wall material inside the cavity (see Fig. 3) leads to the occurrence of a dipole moment of opposite
(than in the previous case) polarity. For an air density of ρ/ρ0 = 10−1, the maximum value of the dipole moment
is approximately half the maximum value for the normal density, and a further decrease in air density results in
a small increase in the dipole moment. The conductivities of the explosion products and air at various times are
shown in Fig. 4.

Curves of the magnetic dipole moment versus time for an explosion in a cavity of 20 m radius are presented
in Fig. 5. In comparison with the cavity of 10 m radius, the value of M increases by an order of magnitude due
to the larger radius of the sphere from which the geomagnetic field is displaced. The dependence on the initial air
density has the same shape as in the previous case. However, unlike in the calculation of the explosion in the cavity
of 10 m radius, for ρ/ρ0 = 10−1, the polarity of the dipole moment is negative because the vaporization of the
wall is insignificant. The maximum value of M is almost three times smaller than that for the normal air density
because of air ionization and the corresponding increase in the conductivity in most of the cavity.
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Fig. 4. Conductivity in the cavity versus time (R = 10 m and ρ = 1.3 ·10−3 g · cm−3): t = 10−4 (1),
10−2 (2), and 1 sec (3).

Fig. 5. Magnetic dipole moment versus time in various formulations of the problem for R = 20 m:
ρ = 1.3 · 10−3 (1), 1.3 · 10−4 (2), 1.3 · 10−5 (3), 1.3 · 10−7 g · cm−3 (4).

TABLE 1

R, m M , A · m2

0 4.4 · 104

10 9.5 · 104

20 1.3 · 106

80 107

160 107

As the cavity radius increases to 80 m, the signal amplitude increases by another order of magnitude, and
with a further increase in the radius, it did not change. The dependence of the amplitude of the magnetic dipole
moment on the cavity radius (for the normal air density in the cavity) is given in Table 1.

In the absence of regions with high conductivity outside the cavity, the quasistationary magnetic vector
strength H at the measuring point with the radius vector r is found form the magnetic dipole moment vector M :

H =
3r(M · r)

r5
− M

r3
.

Thus, the magnetic dipole moment changes by a factor of approximately 200, from the values typical of a
camouflet UNE, to 107 A · m2 for an explosion in a cavity of large radius. We note that this value corresponds to
the effective moment produced by complete displacement of the geomagnetic field from a cavity of radius R∗ ≈ 40 m
(M = 0.5B0R

3
∗, where B0 = 0.5 G is the Earth’s magnetic field). A decrease in air density ρ in cavities (of radii 10

and 20 m) from 1.3 · 10−3 to 1.3 · 10−7 g · cm−3 hardly changes the modulus of the signal amplitude. The change
in the signal polarity indicates the presence of a cavity with a lower density.

Conclusions. As follows from the calculation results, a decrease in the seismic signal during decoupling
is accompanied by a corresponding increase in the magnetic signal. For example, for a 20 m radius cavity, the
decoupling coefficient is 40–110 [8]. In this case, the maximum magnetic dipole moment is 80 times that from
a camouflet explosion. Since in a camouflet explosion, magnetic signal variations are easy to detect [9], such
measurements can be used as an additional means for monitoring the Comprehensive Nuclear Test Ban Treaty.
We note that measurements of the signal shape provide information on the conditions of explosions (presence of a
cavity, its size, use of evacuation).
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